MATH2050C Selected Solution to Midterm Examination

Answer all five questions. Justify your answer.

1. (a) (5 marks) Define the supremum for a nonempty set S in \mathbb{R}.
(b) (5 marks) State the Completeness Property of \mathbb{R}.
(c) (10 marks) Use (b) to prove the Archimedean Property: For any positive $x \in \mathbb{R}$ there is a natural number n satisfying $0<x<n$.
2. (10 marks) Suppose that the sequence $\left\{a_{n}\right\}, n \geq 1$, converges to a. Show that the sequence $\left\{b_{n}\right\}$ given by

$$
b_{n}=\frac{a_{1}+a_{2}+\cdots+a_{n}}{n},
$$

also converges to a.
3. (10 marks) Determine the limit of $\left(1+1 / n^{2}\right)^{5 n^{2}}$ as $n \rightarrow \infty$. You may use the fact $e=\lim _{n \rightarrow \infty}(1+1 / n)^{n}$.
4. (a) (5 marks) Define a Cauchy sequence.
(b) (15 marks) Prove that every Cauchy sequence converges. Hint: Use Bolzano-Weierstrass Theorem.
5. Show that the following sequences are convergent as n goes to ∞ and find their limits (except (c)).
(a) (10 marks)

$$
x_{n}=\frac{2 n^{2}-2 n+6}{5 n^{2}+n-7} .
$$

Solution Since $2-2 / n+6 / n^{2} \rightarrow 2$ and $5+1 / n-7 / n^{2} \rightarrow 5$ as $n \rightarrow \infty$, by Limit Theorem we have

$$
\lim _{n \rightarrow \infty} \frac{2 n^{2}-2 n+6}{5 n^{2}+n-7}=\lim _{n \rightarrow \infty} \frac{2-2 / n+6 / n^{2}}{5+1 / n-7 / n^{2}}=\frac{2}{5} .
$$

(b) (10 marks)

$$
y_{n}=2^{1 / n} .
$$

Solution Write $2^{1 / n}=1+d_{n}, d_{n}>0$. By Bernoulli's inequality, $2=\left(1+d_{n}\right)^{n} \geq$ $1+n d_{n}$ which implies $d_{n} \leq 1 / n$. Therefore, $2^{1 / n}-1=d_{n} \rightarrow 0$, too.
Another proof. As $\frac{2^{1 /(n+1)}}{2^{1 / n}}=\frac{1}{2^{1 / n(n+1)}}<1$ which implies that $\left\{y_{n}\right\}$ is decreasing. As $y_{n} \geq 1$, Monotone Convergence Theorem asserts that the limit of y_{n} exists. Denoting it by a, from $2^{1 / n}, 2^{1 / 2 n} \rightarrow a$ we deduce $a=a^{1 / 2}$, so $a=1$.

Note Cannot not take \log to get $\ln y_{n}=\ln 2 / n \rightarrow 0$. We have not yet defined the \log function.
(c) (10 marks)

$$
z_{n}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{n^{2}} .
$$

Solution First it is clear that z_{n} is increasing. By Monotone Convergence Theorem it suffices to show its boundedness from above. In fact, using $1 / n^{2}<1 / n(n-1)=$ $1 /(n-1)-1 / n$ we have

$$
1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{n^{2}}<1+\frac{1}{2 \times 1}+\frac{1}{3 \times 2}+\cdots+\frac{1}{n \times(n-1)}=1+1-1 / n<2 .
$$

(d) (10 marks) $\left\{a_{n}\right\}$ defined by

$$
a_{n+1}=\frac{1}{2}\left(a_{n}+\frac{7}{a_{n}}\right), a_{1}=1 .
$$

Solution First of all, by AM-GM Inequality, we have $a_{n} \geq \sqrt{a_{n} \times 7 / a_{n}}=\sqrt{7}$. Next,

$$
a_{n+1}-a_{n}=\frac{1}{2}\left(\frac{7-a_{n}^{2}}{a_{n}}\right) \leq 0,
$$

so $\left\{a_{n}\right\}$ is decreasing. By Monotone Convergence Theorem, $a_{n} \rightarrow a$ for some a. Passing to limit in the relation $a_{n+1}=\left(a_{n}+7 / a_{n}\right) / 2$ to get $a=(a+7 / a) / 2$ so $a=\sqrt{7}$.

